2021 Volume 61 Issue 3 Pages 674-683
Boric acid as a negative catalyst can decrease the coke reactivity, and increase coke strength after reaction which is essentially important for high efficient utilization of coke and stable operation of blast furnace. CO2 gasification was conducted to investigate the gasification characteristics and kinetics of H3BO3 treated metallurgical coke with different loading amount and loading method. After 2.0 wt% H3BO3 sprayed, the thickness of coke pore walls increased from 132.41 µm to 162.34 µm, and the porosity decreased from 46.76% to 42.16%. Gasification reaction was suppressed obviously by introducing 0.5 wt% H3BO3. This effect is slightly increased with further addition of H3BO3. As characterized by reactivity index, reactivity of coke without H3BO3 was 9.72 × 10−3 min−1 at 1473 K, while it decreased to 7.19 × 10−3 min−1 when 2.5 wt% H3BO3 loaded. Unreacted core model was used to establish the corresponding kinetic relationship and analyze the rate-limiting step in gasification process. Internal diffusion resistance reduced as temperature increased, and rose alongside carbon conversion rate. Results from reactivity and strength analysis proved that a certain amount of H3BO3 sprayed onto coke surface can significantly improve the coke strength after reaction and reduce the generations of coke fine.