ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Surface Treatment and Corrosion
Effect of Oxidation on Surface Properties of AISI H13 Tool Steel Nitrided by Atmospheric-Pressure Plasma
Junji Miyamoto Ryo TsuboiKazushige Tokuno
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML

2021 Volume 61 Issue 3 Pages 953-959

Details
Abstract

Atmospheric-pressure plasma nitriding of AISI H13 tool steel is performed using a dielectric barrier discharge method. As the surface of the sample nitrided by atmospheric-pressure plasma is oxidized, the surface characteristics are considered to be different from those of conventional plasma nitriding in a vacuum. In this study, the surface properties of the nitrided layer such as tribological properties generated by atmospheric-pressure plasma nitriding are investigated. The results show that the surface and cross-sectional hardness of the nitrided sample increase as the amount of nitrogen gas increases. By contrast, the surface and cross-sectional hardness of the nitrided sample increase as the amount of hydrogen gas decreases. Moreover, the surface luster of the nitrided samples changes unlike the untreated samples; however, the surface roughness of all the nitrided samples is similar to that of the untreated samples. When compared with an untreated sample, the friction coefficient and wear resistance of the nitrided sample are improved. For this reason, we consider that the nitriding in this research also causes oxidation by oxygen, similar to oxynitriding. Samples with oxidation film formed by atmospheric-pressure plasma nitriding have excellent wear resistance and friction coefficient, demonstrating the superiority of atmospheric-pressure plasma nitriding for treating small components.

Content from these authors
© 2021 The Iron and Steel Institute of Japan.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top