ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Fundamentals of High Temperature Processes
Dephosphorization Kinetics of Bloated Metal Droplets Reacting with Basic Slag Containing TiO2
Phillip Brian DrainKezhuan Gu Neslihan DoganRaymond James LongbottomMichael Wallace ChapmanBrian Joseph MonaghanKenneth Stark Coley
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML

2021 Volume 61 Issue 3 Pages 734-744

Details
Abstract

Although the dephosphorization kinetics of bloated metal droplets reacting with oxidizing slag have been studied in detail in the authors’ laboratory, the mechanism of reaction for slags in a basicity range typical of steelmaking, has been sparsely reported. The current study employed a high temperature furnace equipped with X-ray fluoroscopy to observe the bloating behavior of droplets and tracked dephosphorization kinetics by quenching and analyzing droplets after different reaction times. The mechanism of reaction between bloated metal droplets and slag was studied at 1923 K for slags with basicity range C/S=2.56. The rate and extent of dephosphorization was found to be greater in CMS slags compared to CAS slags due to the faster mass transport and a larger thermodynamic driving force. The kinetic analysis showed that the reaction proceeded in two distinct stages, a fast initial stage followed by a slower stage. The km during the first stage of dephosphorization was at least 8 times higher than that during the second stage. This is proposed to be due to a higher internal CO generation rate during the initial stage which increases the rate of surface renewal. The effect of TiO2 on dephosphorization kinetics was also investigated in terms of thermodynamic driving force.

Content from these authors
© 2021 The Iron and Steel Institute of Japan.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top