ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Special Issue on "Toward Suppression of Hydrogen Absorption and Hydrogen Embrittlement for Steels"
Effects of Stress and Plastic Strain on Hydrogen Embrittlement Fracture of a U-bent Martensitic Steel Sheet
Yuki ShibayamaTomohiko Hojo Motomichi KoyamaHiroyuki SaitohAyumi ShiroRyo YasudaTakahisa ShobuTakashi MatsunoEiji Akiyama
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML

2021 Volume 61 Issue 4 Pages 1322-1329

Details
Abstract

The effects of stress and plastic strain distributions on the hydrogen embrittlement fracture of the U-bent martensitic steel sheet specimen were investigated. The hydrogen embrittlement testing of the U-bent specimen was performed. Fracture morphology mainly consisting of intergranular fracture was found inside the hydrogen charged U-bent specimen, which indicated that the crack initiation took place in the interior, and shear lips were found near both surfaces of the U-bent sheet. The synchrotron X-ray diffraction measurement and the finite element simulation were utilized to analyze the stress and plastic strain distributions in the thickness direction of the U-bent specimen. The elastic strain distributions obtained by the measurement showed a good agreement with the simulation. The crack initiation site of the hydrogen-charged U-bent specimen was considered to be correspondent with the region where the tensile stress was the highest, suggesting that the maximum tensile stress predominantly determine the crack initiation.

Content from these authors
© 2021 The Iron and Steel Institute of Japan.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top