ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Special Issue on "Frontier in Characterization of Materials and Processes for Steel Manufacturing"
Microscale Changes in Microstructure and Stress Distribution in Duplex Stainless Steel Caused by Plastic Deformation
Shun-Ichiro TanakaShigeo SatoKengo MatsudaMasaki ChibaShigeru Suzuki
著者情報
ジャーナル オープンアクセス HTML

2022 年 62 巻 5 号 p. 963-969

詳細
抄録

Microscale changes in the microstructure of and stress distribution in a polycrystalline duplex stainless steel comprising ferrite and austenite caused by plastic tensile deformation are characterized to understand the microscopic processes of the crystal plasticity of dual-phase steel. Because the ferrite of the body-centered-cubic structure and the austenite of the face-centered-cubic structure exhibit different mechanical properties, texture changes in the ferrite and austenite caused by uniaxial tensile deformation are investigated based on the electron backscatter diffraction pattern. Residual stresses formed by tensile deformation are characterized using a two-dimensional method based on X-ray diffraction. The results show that the steel exhibits a banded microstructure of ferritic coarse grains and austenitic fine grains, and that the texture is changed by tensile deformation. The grains in the steel are rotated by tensile deformation depending on their orientation with respect to the tensile axis. Residual stress measurements demonstrate that compressive stresses remain in the elastically hard ferrite after tensile deformation, whereas tensile stresses remain in the austenitic phase. The formation of the residual stresses are discussed based on the characteristic microscale plasticity of ferrite and austenite.

Fullsize Image
著者関連情報
© 2022 The Iron and Steel Institute of Japan.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
前の記事 次の記事
feedback
Top