ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Ironmaking
Preparation of Formed Coke from Biomass by Sequence of Torrefaction, Binderless Hot Briquetting and Carbonization
Aditya WibawaU. P. M. AshikShinji KudoShusaku AsanoYusuke DohiTetsuya YamamotoYuki KimuraXiangpeng GaoJun-ichiro Hayashi
著者情報
ジャーナル オープンアクセス HTML
電子付録

2022 年 62 巻 8 号 p. 1629-1638

詳細
抄録

This paper proposes a method of preparing high-strength formed coke from woody biomass without binder. Chipped and pre-dried Japanese cedar was heat-treated in an inert atmosphere (i.e., torrefied) at 225–325°C (Tt), pulverized to sizes in three different ranges, molded into briquettes (in the form of thick disk with diameter/thickness ≈ 2.5) at temperature up to 200°C by applying mechanical pressure of 128 MPa. The torrefied/briquetted cedar (TBC) was then converted into coke by heating to 1000°C in an inert atmosphere at normal pressure. This process sequence enabled to prepare coke having indirect tensile strength (St) of 8–32 MPa, which was much higher than that without torrefaction, below 5 MPa. The torrefaction greatly improved pulverizability of the cedar, which was further promoted by increasing Tt. St of TBC and that of coke both increased as the particle sizes of TBC decreased, but this explained only a minor part of significant effect of Tt on St of the coke. St was maximized at Tt = 275°C regardless of the degree of pulverization. The Tt effects on physicochemical properties of TBC and coke were investigated in detail. The difference in St of coke by Tt was mainly due to that in the increment of St along the carbonization at 500–1000°C. Fracture surfaces of the coke had particular morphologies that had been inherited from the original honeycomb structure of the cedar.

Fullsize Image
著者関連情報
© 2022 The Iron and Steel Institute of Japan.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
前の記事 次の記事
feedback
Top