ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Regular Article
Formation Behavior of M2C and M6C Eutectic Carbides in M42 High-Speed Steel
Lichun ZhengBaiqiang YanJian LouHuabing Li Zhouhua Jiang
著者情報
ジャーナル オープンアクセス HTML

2023 年 63 巻 2 号 p. 294-302

詳細
抄録

M2C eutectic carbide favours the mechanical properties of high-speed steels, but is often largely replaced by coarse M6C eutectic carbide in as-cast M42 steel. To deeply understand the formation behavior of M2C and M6C carbides, M2C and M6C eutectic alloys were prepared according to the composition of M2C and M6C eutectic mixtures in M42 steel, and their solidification behavior was investigated. Only one type of eutectic carbide is formed in water-quenched M2C and M6C eutectic alloys, i.e., M2C and M6C, respectively. Both M2C and M6C carbides appear in the alloys cooled at 3°C/min. However, the M2C eutectic alloy was more significantly affected in terms of carbide type by the low cooling rate. According to thermodynamic calculation, M6C carbide in the M2C eutectic alloy is only slightly more stable in thermodynamics above 1210.1°C, below which M2C carbide becomes stable. For the M6C eutectic alloy, however, only M6C eutectic carbide is thermodynamically stable. Furthermore, thermodynamic results reveal that besides raising the content of C and V, reducing the content of Mo can also greatly promote the formation of M2C carbide in M42 steel, which updates the traditional opinion on the influence of Mo element. The results in this work provide the underlying insights needed to promote the formation of M2C carbide in M42 steel by fine-tuning the composition.

Fullsize Image
著者関連情報
© 2023 The Iron and Steel Institute of Japan.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
前の記事 次の記事
feedback
Top