ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Regular Article
Numerical Study of Fluid Flow and Mixing in the Argon Oxygen Decarburization (AOD) Process
Zhongfu Cheng Yannan WangAbhishek DuttaBart BlanpainMuxing GuoAnnelies Malfliet
著者情報
ジャーナル オープンアクセス HTML

2023 年 63 巻 3 号 p. 492-503

詳細
抄録

A three-dimensional (3D) model has been developed based on the Eulerian multiphase flow approach to investigate the fluid flow behavior and mixing efficiency in the multi-tuyere AOD process. The interphase forces, including drag force, lift force, virtual force, turbulent dispersion force, and wall lubrication force, were incorporated into this model. The model was used to simulate six-tuyere and seven-tuyere AOD processes. The phenomena of multi-jet penetration, bubble plume merging, 3D turbulent flow and mixing characteristics were considered. The results indicate that the bubble plume merging occurs in the upper part of the liquid bath, forming a typical plume cluster. The predicted penetration length for a single tuyere jet agrees well with the previous work. For the multi-jet system, the side jets penetrate deeper than the inside ones. The six-tuyere AOD has a good flow condition in the center of the liquid bath, while the seven-tuyere AOD has a better flow pattern in the sidewall region and the lower bath. Overall, the seven-tuyere AOD performs better in mixing efficiency than the six-tuyere AOD under the same gas flow rate. These findings increase the understanding of the AOD process, allowing further optimization of process parameters. This model can be further extended to incorporate the thermochemical reactions into the modeling of the AOD reactor.

Fullsize Image
著者関連情報
© 2023 The Iron and Steel Institute of Japan.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
前の記事 次の記事
feedback
Top