ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Regular Article
Flow Control to a T-shaped Five-strand Tundish for Its Overall Enhanced Metallurgical Effects with an Approachable Identical Products Quality
Kaimin WangZhanpeng TieSen CaiHuajun WangHaiyan Tang Jiaquan Zhang
著者情報
ジャーナル オープンアクセス HTML

2023 年 63 巻 8 号 p. 1351-1359

詳細
抄録

In response to the frequent problem of inconsistent quality of billet castings and their rolled products from each strand by a five-strand tundish, the flow field in tundish is optimized by presenting new flow control devices and conducting isothermal physical modelling along with numerical simulation. The results show that the dead volume fraction of the optimized case A6 is reduced from 27.74% to 19%, the stagnation time is prolonged from 12 s to 35 s, and the flow dynamic consistency for each strand is improved as well. In the subsequent industry production tests, the temperature difference of molten steel at the outlet of each strand is reduced to 1–5°C. The maximum difference of the as-cast equiaxed crystal rate among five strands is reduced from 5.67% to 2.7%, and the consistency of carbon segregation index is also improved with a basically identical appearance through the billet cross section. The maximum differences in oxygen and nitrogen contents for the rolled products of all strands are 2.7 ppm and 5.7 ppm respectively, which are lower than 5.0 ppm and 13.8 ppm before tundish optimization. The yield strength of rolled products is stabilized with much less divergence as compared to the products with the original tundish. Thus, it is believed that the reasonable flow field optimization to a multi-strand tundish not only will have a well-known positive impact on its tranditional metallurgical effect, but also may bring out an approaching identical steel quality from the same caster as we expected.

Fullsize Image
著者関連情報
© 2023 The Iron and Steel Institute of Japan.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
前の記事 次の記事
feedback
Top