ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

Effect of Air Temperature on the Thermal Behavior and Mechanical Properties of Wire Rod Steel during Stelmor Cooling
Joong-Ki Hwang
著者情報
ジャーナル オープンアクセス 早期公開

論文ID: ISIJINT-2022-047

この記事には本公開記事があります。
詳細
抄録

The effect of air temperature (Ta) on the thermal behavior and mechanical properties of steel wire rods is investigated during the Stelmor air cooling process using a numerical model and an offline cooling simulator. During the Stelmor cooling process, the temperature of the wire rod measured in the summer (28°C) is higher than that in the winter (4°C). The average temperature difference of the wire rod between the seasons is approximately 5°C. In addition, the tensile strength (TS) in the summer is lower than that in the winter: the average TS difference between the seasons is approximately 19 MPa. The different cooling rates of the wire rod depending on Ta are associated with the simple temperature difference between seasons instead of variations in the thermophysical properties of air with temperature. The variation in the cooling rate of the wire rod with Ta is affected significantly by forced convection because the absolute value of the forced convection is approximately 10 times higher than that of natural convection, and the heat flux by thermal radiation is almost unchanged by Ta. The forced convective heat transfer coefficient decreases with Ta because the Reynolds number decreases owing to the decrease in density and increase in kinematic viscosity of air as Ta increases. The deviation in temperature of the wire rod between the summer and winter seasons increases in a wire rod with a small diameter that is fabricated using high forced air because the amount of forced convection increases as the wire diameter decreases and the applied air velocity increases. It is concluded that different working conditions are necessary depending on the Ta, particularly when the wire diameter is small, the blower power is high, and the laying head temperature is high during the Stelmor cooling process.

著者関連情報
© 2022 by The Iron and Steel Institute of Japan
feedback
Top