Scientiae Mathematicae Japonicae
Online ISSN : 1346-0447
HOMOGENEOUS STATIONARY SOLUTION FOR BCF MODEL DESCRIBING CRYSTAL SURFACE GROWTH
H. FujimuraA. Yagi
著者情報
ジャーナル フリー

2009 年 69 巻 3 号 p. 295-302

詳細
抄録
This paper continues a study on the initial-boundary value problem for a nonlinear parabolic equation of forth order which was presented by Johnson-Orme- Hunt-Graff-Sudijono-Sauder-Orr [9] for describing the process of growth of a crystal surface under molecular beam epitaxy(MBE). In the previous papers [5, 6], we have constructed a dynamical system determined from the model equation and have studied asymptotic behavior of solutions. This paper is then devoted to investigating stability or instability of homogeneous stationary solution. Using the instability dimension, we will make a lower dimension estimate for the attractor of the dynamical system constructed in [5].
著者関連情報
© 2009 International Society for Mathematical Sciences
次の記事
feedback
Top