テレビジョン学会誌
Online ISSN : 1884-9652
Print ISSN : 0386-6831
ISSN-L : 0386-6831
緩和型神経回路モデルによる濃淡画像の多値表現と強度レベルの補間
曽根原 登
著者情報
ジャーナル フリー

1991 年 45 巻 10 号 p. 1190-1198

詳細
抄録
Relaxation neural network models have been studied to solve basic image processing problems such as quantization and intensity-surface interpolation. First, a relaxation neural network model is proposed to solve the multi-level representation problem for a gray-level image in local and parallel computations. This network iteratively minimizes the energy function defined by the local error in neighboring picture elements and generates high-quality multi-level images depending on local features. Next the applicability of the relaxation network model to intensity-surface interpolation of a gray-level image is studied from sparsely and irregularly sampled data. A relaxation network model is proposed to interpolate the missing gray levels in parallel, thus minimizing the energy function consisting of a membrane and thin plate. This method is effective for intensity-surface interpolation while preserving discontinuities of the image.
著者関連情報
© 社団法人 映像情報メディア学会
前の記事 次の記事
feedback
Top