Journal of Advanced Computational Intelligence and Intelligent Informatics
Online ISSN : 1883-8014
Print ISSN : 1343-0130
ISSN-L : 1883-8014
Special Issue on Forum for Interdisciplinary Mathematics 2013
Monthly Maximum Accumulated Precipitation Forecasting Using Local Precipitation Data and Global Climate Modes
Junaida Binti SulaimanHerdianti DarwisHideo Hirose
著者情報
ジャーナル オープンアクセス

2014 年 18 巻 6 号 p. 999-1006

詳細
抄録

Successive days of precipitation are known to cause flooding in monsoon-susceptible countries. Forecasting of daily precipitation facilitates the prediction of the occurrences of rainfall and number of wet days. Using the maximum five-day accumulated precipitation (MX5d), we can predict the magnitude of precipitation in a specific period as it may indicate the extreme precipitation. In this study, a method to forecast monthly extreme precipitation using artificial neural networks (ANNs) is assessed using past MX5d data and global climate indices such as Southern Oscillation Index (SOI), Madden Julian Oscillation (MJO), and Dipole Mode Index (DMI) in Kuantan and Kota Bharu, Malaysia. The use of combined inputs (MX5d with SOI, MJO, and DMI) is proposed to investigate the concurrent effect of lagged values of local precipitation data and global climate indices on seasonal extreme precipitation. Four cases of data are sampled representing two major seasonal variations in Malaysia. The analysis of extreme precipitation trends is important for the prediction of high precipitation events. ANNs are widely applied in the hydrology field because of their nonlinear ability in predicting nonstationary and seasonal data. In this paper, we have compared ANNs with seasonal autoregressive integrated moving average (ARIMA) and regression analysis using out-of-sample test data. The results for Kuantan indicate that seasonal ARIMA is the best method to forecast extreme precipitation when MX5d lags are used as input. For Kota Bharu, ANN exhibits better generalization ability than ARIMA and regression analysis when dual inputs (lagged MX5d and lagged global climate indices) are utilized in the model.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2014 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JACIII Official Site.
https://www.fujipress.jp/jaciii/jc-about/
前の記事 次の記事
feedback
Top