Journal of Advanced Computational Intelligence and Intelligent Informatics
Online ISSN : 1883-8014
Print ISSN : 1343-0130
ISSN-L : 1883-8014
Regular Papers
Sequential Cluster Extraction Using Power-Regularized Possibilistic c-Means
Yuchi Kanzawa
著者情報
ジャーナル オープンアクセス

2015 年 19 巻 1 号 p. 67-73

詳細
抄録

The present study proposes an algorithm for sequential cluster extraction using power-regularized possibilistic c-means (pPCM). First, pPCM is derived in a similar manner to two types of entropy-regularized possibilistic c-means (ePCM) derivations, where a power function is utilized instead of the negative entropy in ePCM. The cluster fusion with pPCM is identical to the mean-shift with a generalized Epanichnikov kernel, whereas the proposed method employs sequential cluster extraction with pPCM. Numerical examples show that the cluster number produced by the proposed algorithm did not match with the true class number in real datasets, but the extracted clustering results were partially successful in terms of capturing dense regions of objects.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2015 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JACIII Official Site.
https://www.fujipress.jp/jaciii/jc-about/
前の記事 次の記事
feedback
Top