Journal of Advanced Computational Intelligence and Intelligent Informatics
Online ISSN : 1883-8014
Print ISSN : 1343-0130
ISSN-L : 1883-8014
Regular Papers
Fuzzy Association Rule Mining Based Myocardial Ischemia Diagnosis on ECG Signal
Tianyu LiFangyan DongKaoru Hirota
著者情報
ジャーナル オープンアクセス

2015 年 19 巻 2 号 p. 217-224

詳細
抄録

A fuzzy association rule mining based method is proposed for myocardial ischemia diagnosis on ECG signals. The proposal provides interpretable and understandable information to doctors as an assistant reference, while rule mining on fuzzy itemsets guarantees that the feature segmentation before rule extraction is feasible and effective. A set of fuzzy association rules is mined through experiments on data from the European ST-T Database, and classification results of myocardial ischemia and normal heartbeats on the test dataset using the extracted rules obtained values of 83.4%, 80.7%, and 81.4% for sensitivity, specificity, and accuracy, respectively. The proposed method aims to become a helpful tool to accelerate the diagnosis of myocardial ischemia on ECG signal, and to be expanded to other heart disease diagnosis areas such as hypertensive heart disease and arrhythmia.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2015 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JACIII Official Site.
https://www.fujipress.jp/jaciii/jc-about/
前の記事 次の記事
feedback
Top