Journal of Advanced Computational Intelligence and Intelligent Informatics
Online ISSN : 1883-8014
Print ISSN : 1343-0130
ISSN-L : 1883-8014
Regular Papers
Protein Entity Name Recognition Using Orthographic, Morphological and Proteinhood Features
Sagara SumathipalaKoichi YamadaMuneyuki UneharaIzumi Suzuki
著者情報
ジャーナル オープンアクセス

2015 年 19 巻 6 号 p. 843-851

詳細
抄録

Protein name identification in text is an important and challenging fundamental precursor in biomedical information processing. For example, accurate identification of protein names affects the finding of protein-protein interactions from biomedical literature. In this paper, we present an efficient protein name identification technique based on a rich set of features: orthographic, morphological as well as Proteinhood features which are introduced newly in this study. The method was evaluated on GENIA corpus with the use of different machine learning algorithms. The highest values for precision 92.1%, recall 86.5% and F-measure 89.2% were achieved on Random Forest, while reducing the training and testing time significantly. We studied and showed the impact of the Proteinhood feature in protein identification as well as the effect of tuning the parameters of the machine learning algorithm.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2015 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JACIII Official Site.
https://www.fujipress.jp/jaciii/jc-about/
前の記事 次の記事
feedback
Top