Journal of Advanced Computational Intelligence and Intelligent Informatics
Online ISSN : 1883-8014
Print ISSN : 1343-0130
ISSN-L : 1883-8014
Regular Papers
Several Extended CAViaR Models and Their Applications to the VaR Forecasting of the Security Markets
Xiaorong YangChun HeJie Chen
著者情報
ジャーナル オープンアクセス

2016 年 20 巻 4 号 p. 590-596

詳細
抄録

The conditional autoregressive Value-at-Risk (CAViaR) model, as a conditional autoregressive specification for calculating the Value-at-Risk (VaR) of the security market, has been receiving more and more attentions in recent years. As asymmetry may have a significant influence on the markets and the returns may have an autoregressive mean, this study proposes some extended CAViaR models, including asymmetric indirect threshold autoregressive conditional heteroskedasticity (TARCH) model and indirect generalized autoregressive conditional heteroskedasticity (GARCH) model with an autoregressive mean. We also present two types of CAViaR-Volatility models by adding the volatility term as an exogenous explanatory variable. Our empirical results indicate that extended models perform more effectively on out-of-sample predictions, as both forecasting effect and model stability have been improved. In addition, we find that the forecasting effect is better at the lower quantile (1%) than at the higher quantile (5%); a possible explanation is that extreme market information has more impact on VaR. In addition, there is negative correlation between volatility and VaR; VaR decreases as volatility increases.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2016 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JACIII Official Site.
https://www.fujipress.jp/jaciii/jc-about/
前の記事 次の記事
feedback
Top