Journal of Advanced Computational Intelligence and Intelligent Informatics
Online ISSN : 1883-8014
Print ISSN : 1343-0130
ISSN-L : 1883-8014
Regular Papers
A Control System for the Ball Mill Grinding Process Based on Model Predictive Control and Equivalent-Input-Disturbance Approach
Mingxing FangDezhi ZhengXiaoxiao QiuYouwu Du
著者情報
ジャーナル オープンアクセス

2016 年 20 巻 7 号 p. 1152-1158

詳細
抄録

Stable control of the ball mill grinding process is very important to reduce energy losses, enhance operation efficiency, and recover valuable minerals. In this work, a controller for the ball mill grinding process is designed using a combination of model predictive control (MPC) with the equivalent-input-disturbance (EID) approach. MPC has been researched and applied widely as one of the multi-variable control algorithms for grinding. It is used to decouple in real time. The controller design does not deal with the disturbances directly. However, strong disturbances such as those caused by ore hardness and feed particle size exist in the ball mill grinding. EID estimates the equivalent disturbance of the grinding circuit in the control input channel and integrates this disturbance directly into the control law in order to suppress disturbances promptly and effectively. This results in good disturbance suppression performance. Simulation results demonstrate that the combination of MPC with EID for controlling the ball mill grinding circuit yields better performance in terms of disturbance rejection, rapid response, and strong robustness as compared to the performance of the MPC and proportional-integral (PI) decoupling control.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2016 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JACIII Official Site.
https://www.fujipress.jp/jaciii/jc-about/
前の記事 次の記事
feedback
Top