Journal of Advanced Computational Intelligence and Intelligent Informatics
Online ISSN : 1883-8014
Print ISSN : 1343-0130
ISSN-L : 1883-8014
Regular Papers
Incremental Loop Closure Verification by Guided Sampling
Tanaka Kanji
著者情報
ジャーナル オープンアクセス

2017 年 21 巻 1 号 p. 59-66

詳細
抄録

Loop closure detection, which is the task of identifying locations revisited by a robot in a sequence of odometry and perceptual observations, is typically formulated as a combination of two subtasks: (1) bag-of-words image retrieval and (2) post-verification using random sample consensus (RANSAC) geometric verification. The main contribution of this study is the proposal of a novel post-verification framework that achieves good precision recall trade-off in loop closure detection. This study is motivated by the fact that not all loop closure hypotheses are equally plausible (e.g., owing to mutual consistency between loop closure constraints) and that if we have evidence that one hypothesis is more plausible than the others, then it should be verified more frequently. We demonstrate that the loop closure detection problem can be viewed as an instance of a multi-model hypothesize-and-verify framework. Thus, we can build guided sampling strategies on this framework where loop closures proposed using image retrieval are verified in a planned order (rather than in a conventional uniform order) to operate in a constant time. Experimental results using a stereo simultaneous localization and mapping (SLAM) system confirm that the proposed strategy, the use of loop closure constraints and robot trajectory hypotheses as a guide, achieves promising results despite the fact that there exists a significant number of false positive constraints and hypotheses.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2017 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JACIII Official Site.
https://www.fujipress.jp/jaciii/jc-about/
前の記事 次の記事
feedback
Top