Journal of Advanced Computational Intelligence and Intelligent Informatics
Online ISSN : 1883-8014
Print ISSN : 1343-0130
ISSN-L : 1883-8014
Regular Papers
Weather Recognition of Street Scene Based on Sparse Deep Neural Networks
Wei LiuYue YangLongsheng Wei
著者情報
ジャーナル オープンアクセス

2017 年 21 巻 3 号 p. 403-408

詳細
抄録

Recognizing different weather conditions is a core component of many different applications of outdoor video analysis and computer vision. Street analysis performance, including detecting street objects, detecting road lines, recognizing street sign and etc., varies greatly with weather, so modeling based on weather recognition is the key resolution in this field. Features derived from intrinsic properties of different weather conditions contribute to successful classification. We first propose using deep learning features from convolutional neural networks (CNN) for fine recognition. In order to reduce the parameter redundancy in CNN, we used sparse decomposition to dramatically cut down the computation. Recognition results for databases show superior performance and indicate the effectiveness of extracted features.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2017 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JACIII Official Site.
https://www.fujipress.jp/jaciii/jc-about/
前の記事 次の記事
feedback
Top