Journal of Advanced Computational Intelligence and Intelligent Informatics
Online ISSN : 1883-8014
Print ISSN : 1343-0130
ISSN-L : 1883-8014
Regular Papers
A Cascade Prediction Model of CO/CO2 in the Sintering Process
Ben XuXin ChenMin WuWeihua Cao
著者情報
ジャーナル オープンアクセス

2017 年 21 巻 5 号 p. 785-794

詳細
抄録

Sintering is an important production process in iron and steel metallurgy. Carbon fuel consumption accounts for about 80% of the total energy consumption in the sintering process. To enhance the efficiency of carbon fuel consumption, we need to determine the factors affecting carbon efficiency and build a model of it. In this paper, the CO/CO2 is taken to be a measure of carbon efficiency, and a cascade predictive model is built to predict it. This model has two parts: the key state parameter submodel and the CO/CO2 submodel. The submodels are built using particle swarm optimization-based back propagation neural networks (PSO-BPNNs). Based on the mechanism analysis, spearman’s rank correlation coefficient (SRCC) and stepwise regression analysis (SRA) are used to determine the relationship between the process parameters, in order to determine the inputs of each submodel. Finally, the results of a simulation show the feasibility of the cascade model, which will serve as the basic model for the optimization and control of the carbon efficiency of the sintering process.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2017 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JACIII Official Site.
https://www.fujipress.jp/jaciii/jc-about/
前の記事 次の記事
feedback
Top