2018 Volume 22 Issue 1 Pages 54-61
To handle a large-scale object, a two-stage clustering method has been previously proposed. The method generates a large number of clusters during the first stage and merges clusters during the second stage. In this paper, a novel two-stage clustering method is proposed by introducing cluster validity measures as the merging criterion during the second stage. The significant cluster validity measures used to evaluate cluster partitions and determine the suitable number of clusters act as the criteria for merging clusters. The performance of the proposed method based on six typical indices is compared with eight artificial datasets. These experiments show that a trace of the fuzzy covariance matrix Wtr and its kernelization KWtr are quite effective when applying the proposed method, and obtain better results than the other indices.
This article cannot obtain the latest cited-by information.