Journal of Advanced Computational Intelligence and Intelligent Informatics
Online ISSN : 1883-8014
Print ISSN : 1343-0130
ISSN-L : 1883-8014
Regular Papers
Even-Sized Clustering Based on Optimization and its Variants
Yasunori EndoYukihiro HamasunaTsubasa HiranoNaohiko Kinoshita
Author information
JOURNAL OPEN ACCESS

2018 Volume 22 Issue 1 Pages 62-69

Details
Abstract

A clustering method referred to as K-member clustering classifies a dataset into certain clusters, the size of which is more than a given constant K. Even-sized clustering, which classifies a dataset into even-sized clusters, is also considered along with K-member clustering. In our previous study, we proposed Even-sized Clustering Based on Optimization (ECBO) to output adequate results by formulating an even-sized clustering problem as linear programming. The simplex method is used to calculate the belongingness of each object to clusters in ECBO. In this study, ECBO is extended by introducing ideas that were introduced in K-means or fuzzy c-means to resolve problems of initial-value dependence, robustness against outliers, calculation costs, and nonlinear boundaries of clusters. We also reconsider the relation between the dataset size, the cluster number, and K in ECBO. Moreover, we verify the effectiveness of the variants of ECBO based on experimental results using synthetic datasets and a benchmark dataset.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2018 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JACIII Official Site.
https://www.fujipress.jp/jaciii/jc-about/
Previous article Next article
feedback
Top