Journal of Advanced Computational Intelligence and Intelligent Informatics
Online ISSN : 1883-8014
Print ISSN : 1343-0130
ISSN-L : 1883-8014
Regular Papers
Multi-Objective Solar Farm Design Based on Parabolic Collectors
Zakiya AlfughiShahryar RahnamayanBekir Yilbas
著者情報
ジャーナル オープンアクセス

2018 年 22 巻 2 号 p. 256-270

詳細
抄録

The configuration of solar farms, in which solar collectors are arranged in rows, is related to field and collector characteristics and solar radiation data. The main parameters considered during the optimization of solar farm designs include the number of collector rows, the center-to-center distance between collectors, collector inclination angles, and the rim angles. Solar collectors can be subjected to shading depending on the spacing between the collector rows, collector height and angle, row length, and latitude of the solar field. This study aims to optimize solar farm design by ensuring the farm receives the maximum incident solar energy and incurs the minimum deployment cost. The proposed mathematical model for photovoltaic panels is presented in detail. A multi-objective evolutionary algorithm, a non-dominated sorting genetic algorithm-II (NSGA-II), is used to achieve an optimum solar farm design that incorporates parabolic trough panels. The performances of the parabolic and flat panels are also compared, and the findings are discussed in detail. Based on the obtained results, we can verify that the parabolic PV model could generate more energy than the flat model. However, at the same cost, the flat PV model generated more energy than the parabolic model. There is a trade-off between the absolute values of the various objectives, and a solution can be selected based on the customer’s requirements and desires.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2018 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JACIII Official Site.
https://www.fujipress.jp/jaciii/jc-about/
前の記事 次の記事
feedback
Top