Journal of Advanced Computational Intelligence and Intelligent Informatics
Online ISSN : 1883-8014
Print ISSN : 1343-0130
ISSN-L : 1883-8014
Special Issue on Recent Methodological Developments in Fuzzy Clustering and Related Topics
Characteristics of Rough Set C-Means Clustering
Seiki UbukataKeisuke UmadoAkira NotsuKatsuhiro Honda
著者情報
ジャーナル オープンアクセス

2018 年 22 巻 4 号 p. 551-564

詳細
抄録

Hard C-means (HCM), which is one of the most popular clustering techniques, has been extended by using soft computing approaches such as fuzzy theory and rough set theory. Fuzzy C-means (FCM) and rough C-means (RCM) are respectively fuzzy and rough set extensions of HCM. RCM can detect the positive and the possible regions of clusters by using the lower and the upper areas which are respectively analogous to the lower and the upper approximations in rough set theory. RCM-type methods have the problem that the original definitions of the lower and the upper approximations are not actually used. In this paper, rough set C-means (RSCM), which is an extension of HCM based on the original rough set definition, is proposed as a rough set-based counterpart of RCM. Specifically, RSCM is proposed as a clustering model on an approximation space considering a space granulated by a binary relation and uses the lower and the upper approximations of temporal clusters. For this study, we investigated the characteristics of the proposed RSCM through basic considerations, visual demonstrations, and comparative experiments. We observed the geometric characteristics of the examined methods by using visualizations and numerical experiments conducted for the problem of classifying patients as having benign or malignant disease based on a medical dataset. We compared the classification performance by viewing the trade-off between the classification accuracy in the positive region and the fraction of objects classified as being in the positive region.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2018 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JACIII Official Site.
https://www.fujipress.jp/jaciii/jc-about/
前の記事 次の記事
feedback
Top