Journal of Advanced Computational Intelligence and Intelligent Informatics
Online ISSN : 1883-8014
Print ISSN : 1343-0130
ISSN-L : 1883-8014
Regular Papers
Analysis of Influence Factors for Learning Outcomes with Bayesian Network
Kazushi Okamoto
著者情報
ジャーナル オープンアクセス

2018 年 22 巻 6 号 p. 943-955

詳細
抄録

This study identifies and analyzes the influence factors for learning outcomes at a university with a Bayesian network. It is based on a fact-finding survey on university student life and learning. Suitable constraints and a score metric for the Bayesian network learning are determined via cross-validation, and the learning outcome variables are categorized into subsets according to six abilities: cooperativeness, expressiveness, foreign language, collecting and organizing information, logical thinking, and sociability. The learned network suggests that two to seven factors influence each ability. In addition, it is confirmed that the probability distributions of all most of the identified factors shift to high agreement/experience levels, as self-knowledge levels for the acquired abilities increase, i.e., positive effects exist for most factors for each identified ability.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2018 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JACIII Official Site.
https://www.fujipress.jp/jaciii/jc-about/
前の記事 次の記事
feedback
Top