Journal of Advanced Computational Intelligence and Intelligent Informatics
Online ISSN : 1883-8014
Print ISSN : 1343-0130
ISSN-L : 1883-8014
Special Issue on Mobile Multimedia Big Data Embedded Systems: Part I
The Image Restoration Method Based on Patch Sparsity Propagation in Big Data Environment
Kun Ling Wang
著者情報
ジャーナル オープンアクセス

2018 年 22 巻 7 号 p. 1072-1076

詳細
抄録

The traditional image restoration method only uses the original image data as a dictionary to make sparse representation of the pending blocks, which leads to the poor adaptation of the dictionary and the blurred image of the restoration. And only the effective information around the restored block is used for sparse coding, without considering the characteristics of image blocks, and the prior knowledge is limited. Therefore, in the big data environment, a new method of image restoration based on structural coefficient propagation is proposed. The clustering method is used to divide the image into several small area image blocks with similar structures, classify the images according to the features, and train the different feature types of the image blocks and their corresponding adaptive dictionaries. According to the characteristics of the restored image blocks, the restoration order is determined through the sparse structural propagation analysis, and the image restoration is achieved by sparse coding. The design method is programmed, and the image restoration in big data environment is realized by designing the system. Experimental results show that the proposed method can effectively restore images and has high quality and efficiency.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2018 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JACIII Official Site.
https://www.fujipress.jp/jaciii/jc-about/
前の記事 次の記事
feedback
Top