2019 年 23 巻 3 号 p. 396-401
The numerical control separation in the Software-Defined Network (SDN) allows the control plane to have the absolute management rights of the network. As a new management plane of the SDN, once it is attacked, it will cause the entire network to face flaws. For this reason, this paper proposes a SDN control plane attack detection scheme based on deep learning, which can detect and respond to attacks on the SDN control plane in time. In this scenario, we propose a new pooling scheme that uses the TF-IDF idea to weight the characteristics of network traffic. Ultimately, our method achieved an accuracy of 99.8% in the SDN network’s traffic data set including 24 attack types.
この記事は最新の被引用情報を取得できません。