Journal of Advanced Computational Intelligence and Intelligent Informatics
Online ISSN : 1883-8014
Print ISSN : 1343-0130
ISSN-L : 1883-8014
Regular Papers
Improving GNSS Navigation and Control with Electronic Compass in Unmanned System
Xi HanXiaolin ZhangYuansheng Liu
著者情報
ジャーナル オープンアクセス

2019 年 23 巻 3 号 p. 427-436

詳細
抄録

This paper proposes a compensation technique for the global navigation satellite system (GNSS)/real-time kinematic (RTK) course angle data using an electronic compass for an unmanned system. Additionally, the proportion, integral, and derivative control based on a back-propagation neural network (BP-PID) is introduced to improve the steering safety and riding comfort. The course angle jitter was determined. Because the GNSS/RTK receiver cannot offer stable heading data under specific conditions, including but not limited to susceptibility to obstacles, complex electromagnetic environment, and fewer satellites. The compensation algorithm is based on the determination of the GNSS course angle variance ratio and the asynchronous characteristic between the GNSS and an electronic compass. The combined data provide accurate and robust navigation information for an outdoor unmanned system. To address the limitation of the in-system parameter adjustment, a back-propagation (BP) neural network is adhibited to a conventional proportion, integral, and derivative (PID) lateral control system. The BP-PID control module updates the incremental PID parameters through self-learning, and results in the smoother operation of the vehicle. The flowchart of the learning algorithm and method of calculating the parameters are presented. A typical measurement was conducted and the obtained results were compared with typical RTK navigation results. Thus, the effectiveness of the proposed compensation method was confirmed.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2019 Fuji Technology Press Ltd.
前の記事 次の記事
feedback
Top