Journal of Advanced Computational Intelligence and Intelligent Informatics
Online ISSN : 1883-8014
Print ISSN : 1343-0130
ISSN-L : 1883-8014
Regular Papers
Optical Flow for Real-Time Human Detection and Action Recognition Based on CNN Classifiers
Satoshi HoshinoKyohei Niimura
著者情報
ジャーナル オープンアクセス

2019 年 23 巻 4 号 p. 735-742

詳細
抄録

Mobile robots equipped with camera sensors are required to perceive surrounding humans and their actions for safe and autonomous navigation. In this work, moving humans are the target objects. For robot vision, real-time performance is an important requirement. Therefore, we propose a robot vision system in which the original images captured by a camera sensor are described by optical flow. These images are then used as inputs to a classifier. For classifying images into human and not-human classifications, and the actions, we use a convolutional neural network (CNN), rather than coding invariant features. Moreover, we present a local search window as a novel detector for clipping partial images around target objects in an original image. Through the experiments, we ultimately show that the robot vision system is able to detect moving humans and recognize action in real time.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2019 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JACIII Official Site.
https://www.fujipress.jp/jaciii/jc-about/
前の記事 次の記事
feedback
Top