Journal of Advanced Computational Intelligence and Intelligent Informatics
Online ISSN : 1883-8014
Print ISSN : 1343-0130
ISSN-L : 1883-8014
Regular Papers
Estimation of Object Motion State Based on Adaptive Decorrelation Kalman Filtering
Xinmei WangLeimin WangLongsheng WeiFeng Liu
著者情報
ジャーナル オープンアクセス

2019 年 23 巻 4 号 p. 749-757

詳細
抄録

To estimate the motion state of object feature point in image space, an adaptive decorrelation Kalman filtering model is proposed in this paper. The model is based on the Kalman filtering method. A first-order Markov sequence model is used to describe the colored measurement noise. To eliminate the colored noise, the measurement equation is reconstructed and then a cross-correlation between the process noise and the newly measurement noise is established. To eliminate the noise cross-correlation, a reconstructed process equation is proposed. According to the new process and measurement equations, and the noise mathematical characteristics of the standard Kalman filtering method, the parameters involved in the new process equation can be acquired. Then the noise cross-correlation can be successfully eliminated, and a decorrelation Kalman filtering model can be obtained. At the same time, for obtaining a more accurate measurement noise variance, an adaptive recursive algorithm is proposed to update the measurement noise variance based on the correlation method. It overcomes the limitations of traditional correlation methods used for noise variance estimation, thus, a relatively accurate Kalman filtering model can be obtained. The simulation shows that the proposed method improves the estimation accuracy of the motion state of object feature point.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2019 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JACIII Official Site.
https://www.fujipress.jp/jaciii/jc-about/
前の記事 次の記事
feedback
Top