Journal of Advanced Computational Intelligence and Intelligent Informatics
Online ISSN : 1883-8014
Print ISSN : 1343-0130
ISSN-L : 1883-8014
Regular Papers
Three-Mode Fuzzy Co-Clustering Based on Probabilistic Concept and Comparison with FCM-Type Algorithms
Katsuhiro HondaIssei HayashiSeiki UbukataAkira Notsu
著者情報
ジャーナル オープンアクセス

2021 年 25 巻 4 号 p. 478-488

詳細
抄録

Three-mode fuzzy co-clustering is a promising technique for analyzing relational co-occurrence information among three mode elements. The conventional FCM-type algorithms achieved simultaneous fuzzy partition of three mode elements based on the fuzzy c-means (FCM) concept, and then, they often suffer from careful tuning of three independent fuzzification parameters. In this paper, a novel three-mode fuzzy co-clustering algorithm is proposed by modifying the conventional aggregation criterion of three elements based on a probabilistic concept. The fuzziness degree of three-mode partition can be easily tuned only with a single parameter under the guideline of the probabilistic standard. The characteristic features of the proposed method are compared with the conventional algorithms through numerical experiments using an artificial dataset and are demonstrated in application to a real world dataset of MovieLens movie evaluation data.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2021 Fuji Technology Press Ltd.
前の記事 次の記事
feedback
Top