Journal of Advanced Computational Intelligence and Intelligent Informatics
Online ISSN : 1883-8014
Print ISSN : 1343-0130
ISSN-L : 1883-8014
Regular Papers
BombNose: A Multiple Bomb-Related Gas Prediction Model Using Machine Learning with Electronic Nose Sensor Substitution Technique
Ana Antoniette C. Illahi Elmer P. DadiosRonnie S. Concepcion IIArgel A. BandalaRyan Rhay P. VicerraEdwin SybingcoLaurence A. Gan LimKate Francisco
著者情報
ジャーナル オープンアクセス

2022 年 26 巻 5 号 p. 834-841

詳細
抄録

The safety and security of an individual is important in our society. Bombing attacks can cause significant destruction and death. Energy efficient and compact bomb removal robots are challenging to develop because these typically involved a large array of sensors individually acquiring gas data. This study addresses this challenge by developing a multiple bomb-related gas prediction model using machine learning and the electronic nose sensor substitution technique. Three models can predict gasses such as ammonia, ethanol, and isobutylene using only carbon monoxide, toluene, and methane sensors. The feedforward artificial neural network (FFNN) with three hidden layers was optimized for the regression of each target gas. Consequently, ammonia, ethanol, and isobutylene predictions achieved R2 values of 1, 1, and 1 as well as MSE values of 0.35696, 0.052995, and 0.0022953, respectively. This study demonstrates that the sensor substitution model (BombNose) is highly reliable and appropriately sensitive in the field of bomb detection.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2022 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JACIII official website.
https://www.fujipress.jp/jaciii/jc-about/#https://creativecommons.org/licenses/by-nd
前の記事 次の記事
feedback
Top