Journal of Advanced Computational Intelligence and Intelligent Informatics
Online ISSN : 1883-8014
Print ISSN : 1343-0130
ISSN-L : 1883-8014
Regular Papers
Basketball Sports Posture Recognition Technology Based on Improved Graph Convolutional Neural Network
Jinmao TongFei Wang
著者情報
ジャーナル オープンアクセス

2024 年 28 巻 3 号 p. 552-561

詳細
抄録

Basketball has rapidly developed in recent years. Analysis of various moves in basketball can provide technical references for professional players and assist referees in judging games. Traditional technology can no longer provide modern basketball players with theoretical support. Therefore, using intelligent methods to recognize human body postures in basketball was a relatively innovative approach. To be able to recognize the basketball sports posture of players more accurately, the experiment proposes a basketball stance recognition model based on enhanced graph convolutional networks (GCN), that is, the basketball stance recognition model based on enhanced GCN and spatial temporal graph convolutional network (ST-GCN) model. This model combines the respective advantages of the GCN and temporal convolutional network and can handle graph-structured data with time-series relationships. The ST-GCN can be further deduced by realizing the convolution operation of the graph structure and establishing a spatiotemporal graph convolution model for the posture sequence of a person’s body. A dataset of technical basketball actions is constructed to verify the effectiveness of the ST-GCN model. The final experimental findings indicated that the final recognition accuracy of the ST-GCN model for basketball postures was approximately 95.58%, whereas the final recognition accuracy of the long short term memory + multiview re-observation skeleton action recognition (LSTM+MV+AC) model was about 93.65%.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2024 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JACIII official website.
https://www.fujipress.jp/jaciii/jc-about/#https://creativecommons.org/licenses/by-nd
前の記事 次の記事
feedback
Top