Journal of Advanced Computational Intelligence and Intelligent Informatics
Online ISSN : 1883-8014
Print ISSN : 1343-0130
ISSN-L : 1883-8014
Regular Papers
Research on Evaluation of College-Classroom Teaching Quality Based on Pentapartitioned Neutrosophic Cubic Sets and Machine Vision
Huan NiFangwei Zhang Jun YeBing HanYuanhong Liu
Author information
JOURNAL OPEN ACCESS

2024 Volume 28 Issue 5 Pages 1132-1143

Details
Abstract

University-teaching quality evaluations are crucial for assessing teachers’ effectiveness and enhancing students’ learning in classrooms. To improve the evaluation efficiency, this study suggests a creative classroom evaluation approach by using machine vision and pentapartitioned neutrosophic cubic set (PNCS). First, this study uses machine vision technology to establish a PNCS to capture the students’ states in classrooms. Second, it proposes four entropy functions to determine the attribute weights. Third, it combines the improved entropy weight functions with the PNCS to evaluate the teaching effectiveness. This study’s practical price is to introduce big data theories into teaching evaluation fields. Last, an example is provided to confirm the efficacy and applicability of the evaluation approach suggested in this study.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2024 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JACIII official website.
https://www.fujipress.jp/jaciii/jc-about/#https://creativecommons.org/licenses/by-nd
Previous article Next article
feedback
Top