Journal of Advanced Computational Intelligence and Intelligent Informatics
Online ISSN : 1883-8014
Print ISSN : 1343-0130
ISSN-L : 1883-8014
Regular Papers
Optimal Consensus Control for Switching Uncertain Multiagent Systems Using Model Reference Control and Reinforcement Learning
Wenpeng HeXin Chen Yipu Sun
著者情報
ジャーナル オープンアクセス

2025 年 29 巻 2 号 p. 256-267

詳細
抄録

This paper addresses the optimal consensus problem in uncertain switching multiagent systems. The inherent uncertainty and time-varying structure of local tracking error system render conventional methods ineffective for deriving optimal control protocols. To overcome these challenges, we introduce a reference model for each agent and construct a modified augmented local tracking error (ALTE) system. This approach transforms the optimal consensus problem into two sub-problems: 1) model reference control (MRC) between agents and their reference models; 2) distributed optimal stabilization of the modified ALTE system. We propose a new control scheme that combines filtered tracking error with equivalent input disturbance method to achieve MRC. To realize distributed optimal stabilization of the modified ALTE, we introduce a deep deterministic policy gradient method based on value iteration. Through theoretical analysis, we demonstrate that the multiagent system achieves a near Nash equilibrium, which is further validated by numerical simulation.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2025 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JACIII official website.
https://www.fujipress.jp/jaciii/jc-about/#https://creativecommons.org/licenses/by-nd
前の記事 次の記事
feedback
Top