Journal of Advanced Computational Intelligence and Intelligent Informatics
Online ISSN : 1883-8014
Print ISSN : 1343-0130
ISSN-L : 1883-8014
Regular Papers
GCN-Transformer Autoencoder with Knowledge Distillation for Unsupervised Video Anomaly Detection
Mingchao YanYonghua Xiong Jinhua She
Author information
JOURNAL OPEN ACCESS

2025 Volume 29 Issue 3 Pages 659-667

Details
Abstract

Video anomaly detection is crucial in intelligent surveillance, yet the scarcity and diversity of abnormal events pose significant challenges for supervised methods. This paper presents an unsupervised framework that integrates graph attention networks (GATs) and Transformer architectures, combining masked autoencoders (MAEs) with self-distillation training. GATs are utilized to model spatial and inter-frame relationships, while Transformers capture long-range temporal dependencies, overcoming the limitations of traditional MAE and self-distillation approaches. The model employs a two-stage training process: first, a lightweight MAE combined with a GAT-Transformer fusion constructs a knowledge distillation module; second, the student autoencoder is optimized by integrating a graph convolutional autoencoder and a classification head to identify synthetic anomalies. We evaluate the proposed method on three representative datasets—ShanghaiTech Campus, UBnormal, and UCSD Ped2—and achieve promising results.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2025 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JACIII official website.
https://www.fujipress.jp/jaciii/jc-about/#https://creativecommons.org/licenses/by-nd
Previous article Next article
feedback
Top