Journal of Advanced Computational Intelligence and Intelligent Informatics
Online ISSN : 1883-8014
Print ISSN : 1343-0130
ISSN-L : 1883-8014
Regular Papers
Remaining Useful Life Prediction for Tools Based on Monitoring Data and Stochastic Degradation Model
Baokang ZhangNing LiJiahui HuangTakahiro Arakawa Kentaro IshiiRyuichi Yashima
Author information
JOURNAL OPEN ACCESS

2025 Volume 29 Issue 3 Pages 668-676

Details
Abstract

This study proposes a graph convolutional network (GCN)-based data–model interactive remaining useful life (RUL) prediction method for tools. First, a composite health indicator (CHI) is built by aggregating information from neighboring nodes through the GCN. Second, a stochastic degradation model is established to capture the time-varying evolutionary trend. Specifically, the drift coefficient is treated as a random variable to represent its variability among different individuals of the same type of tool, and the model parameters are estimated using intermediate evolutionary process data. Then, a data–model interactive mechanism is proposed by forming closed-loop optimization between the CHI construction and the stochastic degradation model to enhance the RUL prediction accuracy. Finally, experiments are conducted on the PHM2010 dataset to verify the effectiveness and superiority of the proposed method.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2025 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JACIII official website.
https://www.fujipress.jp/jaciii/jc-about/#https://creativecommons.org/licenses/by-nd
Previous article Next article
feedback
Top