Journal of Advanced Concrete Technology
Online ISSN : 1347-3913
ISSN-L : 1346-8014
Scientific paper
Creep and Shrinkage of Self-Compacting Concrete with and without Fibers
Farhad AslaniShami Nejadi
Author information

2013 Volume 11 Issue 10 Pages 251-265


Fiber-reinforced self-compacting concrete (FRSCC) is a high-performance building material that combines positive aspects of fresh properties of self-compacting concrete (SCC) with improved characteristics of hardened concrete as a result of fiber addition. Considering these properties, the application ranges of both FRSCC and SCC can be covered. To produce SCC, either the constituent materials or the corresponding mix proportions may notably differ from the con-ventional concrete (CC). These modifications besides enhance the concrete fresh properties affect the hardened proper-ties of the concrete including creep and shrinkage. Therefore, it is vital to investigate whether all the assumed hypothe-ses about conventional concrete are also valid for SCC structures. In the present paper, a numerical and experimental study about creep and shrinkage behavior of FRSCC and SCC is performed. Two new creep and shrinkage prediction models based on the comprehensive analysis on the available models of both CC and SCC are proposed for FRSCC and SCC structures. In order to evaluate the predictability of the proposed models, an experimental program was carried out. For this purpose, four SCC mixes - plain SCC, steel, polypropylene, and hybrid FRSCC - are considered in the test pro-gram. Several specimens were loaded and deformation in non-loaded specimens was also measured to assess shrinkage. All specimens were kept under constant stress during at least 364 days in a climatic chamber with temperature and rela-tive humidity of 22°C and 50%, respectively. Results showed that the new models were able to predict deformations with good accuracy, although providing deformations slight overestimated.

Content from these authors
© 2013 by Japan Concrete Institute
Next article