2017 年 11 巻 6 号 p. JAMDSM0068
This paper proposes a method of directly designing the surface of action of a hypoid gear. In the proposed method, the characteristics of the gear meshing are independent of the manufacturing process. The conjugate gear surfaces can then be accurately obtained by coordinate transformation. A plane was selected as the surface of action to achieve hypoid gears with a higher performance than face gears. The proposed hypoid gear may have the same features as cylindrical involute gears that also mesh in the plane of action and are unaffected by translational assembly error. A design example is presented in this paper to verify that tooth surface meshing in the plane of action can be achieved for a high-reduction ratio hypoid gear. The influence of different types of assembly error on the tooth flank error was examined numerically by comparing with face gears.