石油技術協会誌
Online ISSN : 1881-4131
Print ISSN : 0370-9868
ISSN-L : 0370-9868
講演
AI を使った生産・製造設備運転データ解析の事例と今後の発展
落合 勝博 大野 拓也
著者情報
ジャーナル フリー

2018 年 83 巻 2 号 p. 162-166

詳細
抄録

In the fields of oil refining, chemicals, natural resource development, power generation, gas and LNG, etc., “System Invariant Analysis Technology” detects signs of anomalies through the real-time analysis of plant operation data. SIAT is an AI technology designed by NEC to identify the cause-and-effect relationship of large amounts of sensor data. This supports plant owners in preventing occurrences of operation trouble.

JGC and NEC jointly analyzed operation data of a number of plants and found anomalous signs at locations separate from the functional failure of each equipment. These examples show that process engineering knowledge combined with advanced AI such as SIAT works quite effective for reduction of plant downtime.

著者関連情報
© 2018 石油技術協会
前の記事 次の記事
feedback
Top