Journal of Atherosclerosis and Thrombosis
Online ISSN : 1880-3873
Print ISSN : 1340-3478
ISSN-L : 1340-3478
Original Articles
High Glucose Induces Transactivation of the α2-HS Glycoprotein Gene Through the ERK1/2 Signaling Pathway
Hiroshi TakataYukio IkedaTadashi SuehiroAyako IshibashiMari InoueYoshitaka KumonYoshio Terada
著者情報
ジャーナル オープンアクセス

2009 年 16 巻 4 号 p. 448-456

詳細
抄録

Aim: Alpha2-Heremans Schmid glycoprotein (AHSG), also known as fetuin-A, is secreted from the liver and inhibits tyrosine kinase activity of the insulin receptor. Hyperglycemia in type 2 diabetes is not only a secondary manifestation of insulin resistance, but could also be responsible for directly inducing insulin resistance in target tissues. In this study, we examined the effect of high glucose (HG) on AHSG gene transcription in the human hepatoma cell line HepG2.
Methods: AHSG transcriptional activity and protein expression were evaluated using reporter gene assays and Western blot analysis, respectively.
Results: D-glucose, but not L-glucose or mannitol, dose-dependently enhanced AHSG promoter activity. HG (25 mM) also increased AHSG protein expression. No protein kinase C inhibitors (bisindolylmaleimide, Ro-31-8220), an inhibitor of hexosamine biosynthesis pathway (6-diazo-5-oxo-L-norleucine), or a superoxide radical scavenger (tempol) affected HG-induced transactivation. MAPK/ERK kinase inhibitors (PD98059, U0126), but not the JNK inhibitor (SP600125) or p38 inhibitor (SB203580), significantly inhibited promoter activation by HG.
Conclusion: Our data suggest that HG enhances AHSG transcription through activation of the ERK1/2 signaling pathway. Increased AHSG expression in the liver may be a cause of glucose toxicity in the diabetic state.

著者関連情報

この記事はクリエイティブ・コモンズ [表示 - 非営利 - 継承 4.0 国際]ライセンスの下に提供されています。
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.ja
前の記事 次の記事
feedback
Top