JOURNAL OF CHEMICAL ENGINEERING OF JAPAN
Online ISSN : 1881-1299
Print ISSN : 0021-9592
Separation Engineering
Formation of Biodegradable Polyesters Membranes via Thermally Induced Phase Separation
Takaaki TanakaTakashi TsuchiyaHidema TakahashiMasayuki TaniguchiHitomi OharaDouglas R. Lloyd
Author information
JOURNAL RESTRICTED ACCESS

2006 Volume 39 Issue 2 Pages 144-153

Details
Abstract

Microfiltration membranes that can be composted after service were developed from biodegradable polyesters, poly(L-lactic acid) (PLLA) and poly(ε-caprolactone) (PCL). The membranes were formed via the thermally induced phase separation method. A 10 wt% PLLA solution in a mixed diluent of 1,4-dioxane and water (87:13 by weight) was prepared in a flat mold and quenched from 52°C (4°C above cloud point temperature) to 0°C. After diluent extraction, the membrane separated yeast cells (6 μm) from their suspensions. A PCL membrane formed by the same method did not reject yeast cells. PCL membranes formed by quenching a 16 wt% PCL solution to 0°C and quenching a 10 wt% PCL solution to –196°C did separate yeast cells from their suspensions. The permeation flux was much higher in the filtration of 1 kg·m–3 yeast cell suspension with the PLLA and PCL membranes formed by quenching a 10 wt% PLLA or PCL solution to –196°C than in the filtration with the PLLA membrane formed by quenching a 10 wt% PLLA solution to 0°C. The higher flux would be due to the lower resistance of the membranes formed by liquid nitrogen quenching (–196°C) and the mode of depth filtration. Porous biodegradable microfiltration membranes prepared from these polymers have the potential to serve as disposable filters in food and biochemical industries.

Content from these authors
© 2006 The Society of Chemical Engineers, Japan
Previous article Next article
feedback
Top