Journal of the Ceramic Society of Japan
Online ISSN : 1348-6535
Print ISSN : 1882-0743
ISSN-L : 1348-6535
Special Articles: The 71st CerSJ Awards for Advancements in Ceramic Science and Technology: Review
Broadband spectroscopy of dielectrics and oxygen-ion conductors
Takashi TERANISHI
Author information
JOURNAL FREE ACCESS

2017 Volume 125 Issue 7 Pages 547-551

Details
Abstract
The frequency response of the permittivity of oxides is described by the dielectric dispersion of four contributions: the interfacial, dipole, ionic, and electronic polarizations. Our recent studies related to the broadband dielectric and conductivity spectroscopy of oxides are reviewed herein. Two methods, i.e., the micro-sized planar electrode and ring resonator techniques, were developed to measure the microwave dielectric properties of specimens having a large permittivity. Using these methods, we developed the complex permittivity of a paraelectric SrTiO3 (ST) single crystal up to a few GHz. We also investigated the polarization contribution to the microwave tunability, T, of ferroelectric Ba0.8Sr0.2TiO3 (0.8-BST). The apparent tunability of 0.8-BST was determined by the domain wall density; a higher domain wall density resulted in a larger dipole polarization. A modified Kohlrausch–Williams–Watts model was used for the dipole relaxation function. Ionic polarization was analyzed using the four-parameter semi-quantum phonon dispersion model. The dielectric function combining these two relationships was used for broadband spectroscopic analysis of the dielectrics. The dipole and ionic polarizations and electronic contributions were simultaneously quantified for the ferroelectric BaTiO3 ceramic and ST single crystal. The broadband conductivity spectrum of 8 mol% yttria-stabilized zirconia, a fast oxygen-ion conductor, was also acquired to quantify all conduction contributions, i.e., the interfacial, grain boundary, and bulk contribution.
Content from these authors
© 2017 The Ceramic Society of Japan
Previous article Next article
feedback
Top