Abstract
To ensure the safety of steel structures that can exhibit fatal damage due to corrosion, it is important to quantitatively clarify the corrosion environment in each member and to evaluate the time-dependent corrosion behavior. The purpose of this research is to propose a method for predicting the time-dependent mean corrosion depth of uncoated structural steel plates subjected to rainfall effect, using an ACM type corrosion sensor consisting of a Fe/Ag galvanic couple. Atmospheric exposure tests were carried out on the uncoated steel plates. In addition, the corrosion environments of the skyward- and groundward-facing surfaces of the specimens were monitored using ACM sensors to evaluate the quantitative relationship between the corrosivity of the atmospheric environments and the mean corrosion depth.