Abstract
Involvement of microorganisms to corrosion refers to microbiological influenced corrosion( MIC). We have previously succeeded a lab-scale corrosion test using bottom water from oil-storage tanks and shown microbial community change after the corrosion by a denaturing gradient gel electrophoresis analysis. However, those community structures have not yet been correlated to the accelerated corrosion. Therefore, we further conducted analysis of microbial community for by pyrosequencing using a next-generation sequencer. In the corrosion sample, an acetic acid bacterium Acetobacterium sp. and a sulfate-reducing bacterium Desulfovibrio sp. were enriched. In contrast, only Desulfovibrio sp. bacterium was enriched in the non-corroded culture, and Acetobacterium sp. bacterium was not observed. These results indicate that the Acetobacterium sp. bacterium may involve in the accelerated corrosion. This is first report of the corrosion by the Acetobacterium sp. bacterium. The combination of a lab-scale corrosion test and microbial community analysis by pyrosequencing would be useful to correlate between corrosion behavior and microbial community change. In future, such investigation would contribute to the understanding for the microbiologically influenced corrosion.