Zairyo-to-Kankyo
Online ISSN : 1881-9664
Print ISSN : 0917-0480
ISSN-L : 0917-0480
Research Paper
Predictive Model of Thermodynamic Properties and CO2 Corrosion of Carbon Steels in CCS Environments
Masakatsu UedaToshiyuki Sunaba
Author information
JOURNAL FREE ACCESS

2023 Volume 72 Issue 4 Pages 131-141

Details
Abstract

A thermodynamic model (U-Cal model) has been developed that predicts fugacities and water content in the CO2 phase (gas or supercritical fluid), and CO2 solubility and pH in aqueous solution in CCS environment, which is a CO2 environment in a supercritical state. The values predicted by the U-Cal model agreed well with the measured values. The water content in the CO2 phase increases to 1-10 g/L due to the mutual dissolution of CO2 and H2O. The increase in the solubility of CO2 in aqueous solution and the decrease in pH with increasing pressure are small. The CO2 corrosion behavior of carbon steel was discussed by using the U-Cal model. In iron dissolution dominant CO2 corrosion in aqueous solution of carbon steel, the corrosion rate could be understood as a function of pH. In FeCO3 formation dominant CO2 corrosion, it was considered that the corrosion progressed as FeCO3 dissolves to supersaturation and then FeCO3 precipitated on the surface of the material. The FeCO3 precipitation behavior was predicted from the crystal growth rate equation. Corrosion of carbon steel in the CO2 phase involves similar mechanisms to corrosion in aqueous solution, but the corrosion rate is lower.

Content from these authors
© 2023 Japan Society of Corrosion Engineering
Previous article
feedback
Top