Abstract
The reason why a tensile stress applied parallel with a metal surface retards the development of cavitation erosion on the surface was elucidated. By the finite element method, stress distribution in an elastic solid under the attack of cavitation impulsive pressure was obtained. On this stress, another was superimposed by applying a tensile load in the direction parallel to the solid surface. As a result, the compressive stress caused by the cavitation impulsive pressure was canceled through the superimposed tensile stress. Observation of a metal surface exposed to cavitation attack revealed that the plastic flow of the metal surface caused by cavitation impulsive pressure was retarded by the tensile stress applied. Consequently it was concluded that the tensile stress applied parallel with a metal surface retards the development of cavitation erosion because it cancels the compressive stress caused by cavitation impulsive pressure and this reduces the plastic flow of the metal surface.