Abstract
Effects of Fe (III) ions on corrosion of stainless steel were examined in highly concentrated HNO3 solutions at high temperature, using mass loss measurements, electrochemical measurements, and quantitative analysis of NOx evolved during immersion.
Addition of Fe(NO3)3 into HNO3 caused the corrosion potential of stainless steel to become nobler gradually from the passive to trans-passive potential regions during immersion experiments. The average corrosion rate of stainless steel for 360ks immersion increased with increasing Fe(III) concentration. Quantitative analysis of NOx evolved during immersion suggested that Fe(III) ions adsorbed on the specimen surface act as catalytic centers in the reduction of HNO3.