Abstract
The corrosion behavior of Si3N4 SiC, mullite, alumina and sapphire was investigated in supercritical water at 450°C and 45MPa for 2 to 50h. Corrosion resistance for the ceramics was as follows in the order; Si3N4<SiC<mullite<alumina<sapphire. Pitting corrosion with formation of amorphous layer and intergranular corrosion due to dissolution of additives were observed in PLS-Si3N4 and PLS-SiC, respectively. The corrosion behavior of mullite was characterized by dissolution of SiO2 and formation of boehmite residue layer. High purity alumina ceramics showed the highest corrosion resistance in the ceramics. Intergranular corrosion proceeded in the alumina ceramics and its corrosion rate was strongly dependent on the impurity content.